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SUMMARY

This paper describes an adaptive algorithm for optimal control of time-dependent partial di�erential-
algebraic equation (PDAE) systems. A direct method based on a modi�ed multiple shooting type
technique and sequential quadratic programming (SQP) is used for solving the optimal control problem,
while an adaptive mesh re�nement (AMR) algorithm is employed to dynamically adapt the spatial
integration mesh. Issues of coupling the AMR solver to the optimization algorithm are addressed. For
time-dependent PDAEs which can bene�t from the use of an adaptive mesh, the resulting method is
shown to be highly e�cient. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we introduce COOPTAM, a software package with adaptive time and space in-
tegration for optimal control of time-dependent partial di�erential-algebraic equation (PDAE)
systems. COOPTAM combines our previous work on optimal control of di�erential-algebraic
equation (DAE) systems [1–3] and on adaptive mesh re�nement (AMR) methods for 2D
PDAEs [4, 5], resulting in a powerful new tool for dynamic optimization. The optimal con-
trol problem is solved by a modi�ed multiple shooting technique and sequential quadratic
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Figure 1. Structure of the COOPTAM code.

programming (SQP) [6]. Spatial adaptivity is achieved by the AMR algorithm, while time
adaptivity is provided by the underlying DAE solver (DASPK3.0) [7–9]. The overall structure
of COOPTAM and the main interdependencies are shown in Figure 1.
There is a large body of work on PDE-constrained optimization and optimal control, but

most studies were done in the context of optimization of elliptic PDEs. Such problems were
tackled in many di�erent engineering areas, such as optimal control of steady Navier–Stokes
�ows [10, 11] and structural optimization [12, 13] to mention only a few. A few studies have
considered optimal control of time-dependent PDEs [3, 14] but we are not aware of any work
on optimal control of time-dependent PDEs with adaptivity in both space and time.
The target of the COOPTAM software is the optimal control of time-dependent PDAEs whose

solutions exhibit steep fronts that move in time over the spatial domain. To resolve details
around the moving front, the spatial discretization grid must be very �ne around the front but
can be signi�cantly coarser far from the front. Since the computational complexity depends
directly on the dimension of the spatial grid, using an adaptive mesh strategy during the time
integration of such PDAEs greatly improves the overall performance of the optimal control
software.
We begin in Section 1.1 by presenting the general class of problems under consideration.

In Section 2, we give more details on the two basic components of COOPTAM: the modi-
�ed multiple shooting method and SQP for dynamic optimization, and the adaptive mesh
re�nement algorithm for solution of the PDAEs. In Section 3, we focus on the technical
issues of coupling these two techniques. We conclude in Section 4 by presenting numerical
results which highlight the capabilities of our software as well as the e�ciency improve-
ments due to the use of the AMR method in conjunction with modi�ed multiple shooting
and SQP.
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1.1. The optimal control problem

Consider �⊂R2 and let w(t;x) : [t0; t1]×�→RNw satisfy the time varying, spatial 2D PDAE
system

F(t;x;w; @t ; @x; p; u(t))=0 (1)

where t ∈ [t0; t1] and x=[x1; x2]T ∈�, with initial conditions
w(t;x)=w0(x); t= t0 and x∈� (2)

and boundary conditions

w(t;x)=wbc(t); t ∈ [t0; t1] and x∈ @� (3)

The control parameters p and the vector-valued control function u(t) must be determined such
that the scalar objective function∫ t1

t0
 (t;x;w(t;x); p; u(t)) dt + �(t1;x;w(t1;x); p; u(t1)) (4)

is minimized and some additional equality and=or inequality constraints

g(t;x;w(t;x); p; u(t))R0

are satis�ed. The optimal control function u∗(t) is assumed to be continuous.
There are two main approaches for solving optimal control problems of the type described

above. If there are no time invariant parameters p, the so-called indirect method, based on
Pontryagin’s maximum principle, constructs the Hamiltonian and adjoint system corresponding
to the optimal control problem (1)–(4) and then solves the resulting boundary value prob-
lem for the optimal control u∗. In the direct method the controls u are parameterized in a
lower-dimensional space and the resulting non-linear programming problem is solved directly.
Because generation of the adjoint system and solution of the resulting boundary value prob-
lem in the indirect method are di�cult for general problems and because the direct method
covers a larger class of problems of interest (such as dynamic optimization, where only time
invariant parameters and no time varying controls appear in the model equations) we have
implemented a direct approach.
As mentioned before, a direct approach for the optimal control problem employs a low-order

parameterization of the time varying controls, the coe�cients of which are to be determined
by an optimization algorithm. At each iteration of the optimizer, the model equations (1)
are integrated in time and their solution is used in evaluating the current cost function (4).
In COOPTAM we transform the system of PDAEs into a system of DAEs through semidis-
cretization in space. We do this using the AMR technique which is presented in more detail
in Section 2.2. The variables in the resulting DAE are denoted by �w. The dimension of �w
can be very large. However, the dimensions of the parameters p and of the representation of
the control function u(t) are assumed here to be much smaller. To represent u(t) in a low-
dimensional vector space, we use piecewise polynomials on [t0; t1], their coe�cients being
determined by the optimization. For ease of presentation we can therefore assume that the
vector p contains both the parameters and these coe�cients (we let Np denote the combined
number of these values).
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Hence, the problem is given by

minimize
∫ t1

t0

� (t; �w(t); p) dt + ��(t1; �w(t1); p) (5a)

subject to �F(t; �w; �w′; p)=0; �w(t0)= �w0 (5b)

�g(t; �w(t); p)R0 (5c)

2. DESCRIPTION OF METHODS

In this section, we brie�y describe the two basic components of our optimal control software,
COOPTAM. First we discuss the modi�ed multiple shooting method and SQP implemented in
COOPTAM. Then we outline the adaptive mesh re�nement algorithm employed in the integration
of the underlying PDAE.
For more details on the optimization method, including control parameterization, additional

bounds on controls, modi�cations of the multiple shooting method and the resulting optimiza-
tion Jacobian, we encourage the reader to refer to References [1–3]. Further details on the
AMR technique and its implementation are given in References [4, 5].

2.1. Modi�ed multiple shooting for dynamic optimization

There are a number of well-known methods for direct discretization of the optimization prob-
lem (5). The single shooting method solves the DAEs (5b) over the interval [t0; t1], with the
set of controls generated at each iteration by the optimization algorithm. However, it is well
known that single shooting can su�er from a lack of stability and robustness [15]. Moreover,
for this method it is di�cult to maintain additional constraints and to ensure that the iterates
are physical or computable. The �nite-di�erence method or collocation method discretizes the
DAEs over the interval [t0; t1]. The DAE solutions at each discrete time and the set of controls
are generated at each iteration by the optimization algorithm. Although this method is more
robust and stable than the single shooting method, it requires the solution of an optimization
problem which for a large-scale DAE system (such as those considered here) is enormous,
and it does not allow for the use of adaptive DAE software.
We thus consider the multiple-shooting method for the discretization of Equation (5). In

this method, the time interval [t0; t1] is divided into subintervals [ti; ti+1] (i=1; : : : ; Nms), and
the di�erential equations (5b) are solved over each subinterval, where additional intermediate
variables Wi are introduced. On each subinterval we denote the solution at time t of (5b) with
initial value Wi at ti by �w(t; ti;Wi ; p). More details on the integration are given in Section 2.2.
Continuity between subintervals is achieved via the continuity constraints

C i
1(Wi+1;Wi ; p)≡Wi+1 − �w(ti+1; ti;Wi ; p)= 0

The additional constraints (5c) are required to be satis�ed at the boundaries of the shooting
intervals

C i
2(Wi ; p)≡ g(ti;Wi ; p)R0
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Following common practice, we write

�(t)=
∫ t

t0

� (�; �w(�); p) d� (6)

which satis�es �′(t)=  (t; �w(t); p), �(t0)=0. This introduces another equation and variable
into the di�erential system (5b). The discretized optimal control problem becomes

min
W2 ; :::;WNms ;p

�(t1) + ��(t1) (7)

subject to the constraints

C i
1(Wi+1;Wi ; p) = 0 (8a)

C i
2(Wi ; p)¿0 (8b)

This problem can be solved by an optimization code. We use the solver SNOPT5.3 [6], which
incorporates an SQP method. The SQP methods require a gradient and Jacobian matrix that
are the derivatives of the objective function and constraints with respect to the optimization
variables. We compute these derivatives via highly e�cient DAE sensitivity software DASPK3.0
[8, 9]. The sensitivity equations to be solved by DASPK3.0 are generated via the automatic
di�erentiation software ADIFOR2.0 [16].
This basic multiple-shooting type of strategy can work very well for small-to-moderate

size DAE systems, and has an additional advantage that it is inherently parallel. However,
for large-scale DAE systems there is a problem because the computational complexity grows
rapidly with the dimension of the DAE system. The di�culty lies in the computation of
the derivatives of the continuity constraints (8a) with respect to the variables Wi. The work
to compute the derivative matrix @ �w(t)=@Wi is of order O(N 2), and for the problems under
consideration N can be very large (for example, for a DAE system obtained from the semi-
discretization of a PDAE system, N is the product of the number of PDAEs and the number
of spatial grid points). In contrast, the computational work for the single shooting method is
of order O(NNp) although the method is not as stable, robust or parallelizable.
We reduce the computational complexity of the multiple shooting method for this type of

problem by modifying the method to make use of the structure of the continuity constraints
to reduce the number of sensitivity solutions which are needed to compute the derivatives. To
do this, we recast the continuity constraints in a form where only the matrix–vector products
(@ �w(t)=@Wi)^j are needed, rather than the entire matrix @ �w(t)=@Wi. The matrix–vector products
are directional derivatives; each can be computed via a single sensitivity analysis. The number
of vectors ^j such that the directional sensitivities are needed is small, of order O(Np). Thus
the complexity of the modi�ed multiple shooting computation is reduced to O(NNp), roughly
the same as that of single shooting. Unfortunately, the reduction in computational complexity
comes at a price: the stability of the modi�ed multiple shooting algorithm su�ers from the
same limitations as single shooting. However, this is not an issue for many PDE systems,
including the applications described here. This is due to the fact that optimal control is usually
considered for problems which have already been simulated successfully and are thus stable
from the left. We have found that the modi�ed method is more robust than single shooting
for non-linear problems. Further details on the algorithm can be found in Reference [1].
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In the context of the SQP method, the use of modi�ed multiple shooting involves a transfor-
mation of the constraint Jacobian. The a�ected rows are those associated with the continuity
constraints and any path constraints applied within the shooting intervals. Path constraints
enforced at the shooting points (and other constraints involving only discretized states) are
not transformed. The transformation is cast almost entirely at the user level and requires
minimal changes to the optimization software, which is important because software in this
area is constantly being modi�ed and improved. Gill et al. [1] have shown that the modi�ed
quadratic subproblem yields a descent direction for the ‘1 penalty function. DAOPT is a mod-
i�cation to the SNOPT5.3 optimization code that uses a merit function based on an ‘1 penalty
function.

2.2. Adaptive mesh re�nement

A method of lines (MOL) approach was employed to solve the PDAE on an adaptive mesh.
First the PDAE system is semidiscretized in space to form a DAE system. Then the DAE
system is integrated by a variable order variable step-size backward di�erentiation formula
(BDF) method. The structured adaptive mesh re�nement (SAMR) method was used to achieve
adaptivity in space when the mesh varies with time. SAMR uses a hierarchical block data
structure where each block (called a patch) can be solved as a single grid. A re�nement
can take place at each time step or after a number of time steps. During the re�nement, the
monitor function is evaluated on the current level and the points with signi�cant errors are
�agged. After bu�er points are added around these points, they are clustered and organized
into patches. The re�nement is done recursively until the �nest level is reached or there are
no �agged points. An example of a 2D hierarchical grid is shown in Figure 2.
Most implementations of SAMR have used explicit time integration, and re�ned time as

well as space by taking local smaller time steps for �ner grids. Explicit time integration
is not e�cient when solving some parabolic type PDEs or when solving for the solutions
of near steady-state equations. In Reference [4], SAMR was combined with an implicit time
integration solver DASPK3.0 [5], which also has the sensitivity analysis capability. An e�cient
transformation between the DASPK3.0 �at structure and the AMR hierarchical data structure
was designed and applied in Reference [4].
After a new grid is generated and the solution has been interpolated from the old mesh to

the new one, the simplest approach would be to restart the time integrator as though solving
a new problem. This is called a full restart and is appropriate for single-step time integration
methods. For multistep methods, a full restart would cause the ODE=DAE solver to choose the
lowest order single-step method and to reduce the time step size to satisfy the error tolerance
of the lowest order method. Therefore, we use a warm restart in our implementation [4].
The history array used by the ODE=DAE solver is interpolated to the new mesh, and the
integration is continued with almost the same step size and order as would have been used
had the remeshing not taken place.
Even with the warm restart, the overhead of the mesh adaptation is relatively high. The

most signi�cant cost is evaluation of the Jacobian. To further reduce the overhead of the
mesh adaptation, we perform the mesh re�nement after a number of time steps instead of at
every time step, and replace the old adaptive mesh with the new one only when the variance
is large enough. An automatic di�erentiation tool is used to reduce the cost and to increase
the reliability of the Jacobian evaluation.
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Figure 2. The hierarchical data structure for SAMR.

There are two possibilities for the sensitivity analysis of a PDE system. First, we can
use the MOL approach and transform the PDE system into an ODE=DAE system. Then the
sensitivity methods in DASPK3.0 can be used. The sensitivity equations can be evaluated by
several options in DASPK3.0, such as the �nite di�erence or ADIFOR2.0 options. This approach
does not require any modi�cation of the PDE discretization codes. For these reasons, this is
the approach implemented in COOPTAM. The other approach is to solve the sensitivity PDEs
coupled with the original physical PDEs directly. They are simultaneously discretized in space
and then the coupled ODE=DAE system is solved by DASPK3.0.
For the adaptive grid solver, a decision must be made on whether the selection of mesh

re�nement should be based only on the state PDEs or on both the state and sensitivity PDEs.
We observed in our applications that the sensitivity PDEs shared the same re�nement regions
as the state PDEs. Therefore, only the state PDEs are used in our mesh re�nement. However,
both the state and sensitivity PDEs are interpolated from the old mesh to the new one if
the new mesh is adopted. The details on how sensitivity variables are stored in the AMR
hierarchical structure and transformed to the DASPK3.0 �at linear structure are described in
Reference [4].

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:1457–1469



1464 R. SERBAN, S. LI AND L. R. PETZOLD

3. COUPLING ISSUES

Di�culties in coupling the optimal control software with the AMR integrator arise from the
discrepancies in the spatial meshes that are used by the optimizer and the integrator. On
one hand, the optimizer must be provided a �xed-size problem which means that information
passed to the optimizer (constraint and objective functions and their derivatives) and infor-
mation provided by the optimizer (current estimates of parameters, control parameters, and
states at the multiple shooting interface) relate to a �xed spatial mesh, henceforth called the
optimization mesh (OM). On the other hand, the adaptive mesh algorithm has the freedom of
changing the mesh during integration over any given shooting interval. This can involve both
re�nement and coarsening of the spatial mesh. We call this changing mesh the integration
mesh (IM). Besides these two meshes, we introduce the user mesh (UM) which is the initial
mesh provided by the user. Usually, the UM provides only the �rst level in the mesh hierar-
chy. However, the UM can enforce re�nement in certain zones of the spatial domain, where
either the problem is known to require it, or where more details are needed in the evaluation
of the cost functional. For an example of the latter case see Section 4.
There are three major coupling issues: (1) optimizer-integrator mesh correlation, (2) re-

covery of sensitivities on the OM and (3) computation of the cost functional on hierarchical
mesh structures.

Optimizer-integrator mesh correlation: As mentioned before, the main problem comes from
the fact that we must provide a �xed-size problem to the optimizer. Our goal is to generate
the OM in such a way that it captures relevant details at the multiple shooting interfaces
since these are the only points in time where communication between the optimizer and the
integrator takes place. At these points, the optimizer provides initial values for the integration
over the following shooting interval, while the integrator provides �nal solutions and sensi-
tivities over the previous shooting interval. As a �nal consideration, we must realize that the
mesh re�nement history during integration over any given shooting interval depends on the
current estimates of the parameters and controls. As a consequence, an OM generated using
only the initial guess for parameters and controls may not capture the necessary details at the
optimal solution. To overcome these problems we have developed a staggered optimization
strategy. In stage 1, we obtain a �rst approximation of the optimal parameters and controls
by performing an optimization on a �xed mesh, during which the UM provided initially by
the user is used as both OM and IM. During this �rst stage, the adaptivity in space of the
PDAE integrator is turned o�. In stage 2, with the parameters and controls obtained at the
end of stage 1, the PDAEs are integrated on an adaptive mesh. The mesh re�nement history
is stored, and the OM is generated as the reunion of the IMs at the end of all shooting inter-
vals. Finally, in stage 3 a �nal optimization on the adaptive mesh is performed. For reasons
explained next, during this �nal stage the integration mesh, although allowed to change, is
enforced to always contain the OM generated in stage 2.
Recovery of sensitivities on the optimization mesh: The second di�culty arises from the

fact that sensitivities with respect to some initial conditions cannot be computed from sensitiv-
ities with respect to neighbouring initial conditions. This could become an issue if the AMR
algorithm decides to coarsen the grid during the integration. Since the integrator is restarted
whenever a change in the IM is performed, the sensitivities with respect to initial conditions
corresponding to the discarded nodes are lost. The values of these sensitivities at the end of
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the shooting interval cannot be computed a posteriori from sensitivities with respect to initial
conditions corresponding to nodes that were computed during the integration over the shoot-
ing interval. Therefore, we impose that at all times during integration over a given shooting
interval, OM⊆ IM. In other words, coarsening of the OM is not allowed.
Computation of the cost functional: Finally, a hierarchical mesh structure necessarily stores

information for the same physical point in several grid levels. As a consequence, the same
point could potentially be included more than once in the evaluation of the cost functional.
To overcome this problem, we introduce a coloring of the nested levels such that only values
from the most re�ned level are used in evaluating the cost functional.

4. NUMERICAL RESULTS

To illustrate the use of COOPTAM we consider the following PDE dependent on the control
u(t):

wt + 1
2 ∇w2 − r(x; y; t)∇2w=0 (9)

with r(x; y; t)=C(x− xm)(x− xM )(y−ym)(y−yM )u(t)+ r0. This test problem, a modi�cation
of Burgers’ equations, was chosen because its solution, like those in applications targeted
by our software, exhibits a steep moving front and hence its e�cient solution requires an
adaptive method. The domain � is given as

�= {(x; y) | xm6x6xM ;ym6y6yM}
and t ∈ [0; tf]. In the numerical computations presented below, we have used �= [0; 0:5] ×
[0; 0:5]; t ∈ [0; 0:9]; C=50:0 and r0 = 0:005. With the constraint u(0)=0, boundary conditions
and initial values are obtained from the analytical solution for r= r0,

�w(x; y; t)=
1

1 + exp[(x + y − t)=(2r0)]

as

BC w(x; y; t) = �w(x; y; t) for (x; y)∈ @� and ∀t ∈ [0; tf]
IC w(x; y; 0) = �w(x; y; 0) for (x; y)∈�

(10)

Note that, if the control function u(t)=0, the solution of (9) is a steep front that moves
in time from the lower left corner towards the upper right corner. At any time, far from
this moving front (both behind it and ahead of it) the solution is very �at. To resolve the
details of the solution, the integration grid must be very �ne around the front but can be
signi�cantly coarser far from it. Since the front moves in time, an adaptive mesh strategy is
desirable during the integration.
The optimal control u∗ and corresponding optimal solution w∗(x; y; t) must be determined

such that the solutions at speci�ed points in � follow prescribed time trajectories. The cost
function can thus be written as

J (u)=
M∑
i

∫ tf

0
[w(xi; yi; t)− wi(t)]2 dt (11)
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Figure 3. (a) UM grid; (b) OM grid generated after step 1; and (c) OM grid generated without step 1.

which must be minimized subject to the dynamical model (9) with boundary conditions and
initial conditions (10) and the additional constraint u(0)=0.
Using Nms=2 shooting intervals and Nu=3 control subintervals per shooting interval,

a minimal dimension piecewise quadratic polynomial control parameterization requires Np=10
parameters. We considered the following M =3 trajectories wi in the cost function:

w1(0:15; 0:15; t) =



0 if t60:1

(t − 0:1)=0:4 if 0:1¡t¡0:5

1 if t¿0:5

w2(0:25; 0:25; t) =



0 if t60:2

0:9(t − 0:2)=0:5 if 0:2¡t¡0:7

0:9 if t¿0:7

w3(0:35; 0:35; t) =

{
0 if t60:3

0:7(t − 0:3)=0:6 if 0:3¡t¡0:9

(12)

The initial spatial mesh (UM) contains 515 grid points structured on two levels, with the
second level providing more grid nodes around the points where trajectories are imposed
(see Figure 3(a)). Starting with an initial guess u0(t)=0, the staggered optimization proce-
dure described in Section 3 was employed to reduce the cost function from J (u0)=1:185
to J (u∗1)=0:126 after 12 optimization iterations in stage 1 and then to J (u∗)=0:118 after 5
optimization iterations in stage 3. In stage 2, the OM was generated and contained 755 grid
points (see Figure 3(b)). The largest number of grid points in any of the integration meshes
was 1168.
The optimal control u∗ is shown in Figure 4. Figure 5(a) shows the optimal solution w(x; y)

at t=0:45 and is presented here to explain the structure of the optimization mesh OM. In
Figure 5(b) we present trajectories at the three points considered in (12) with solid lines
representing the desired trajectories wi, dotted lines representing trajectories obtained with the
initial guess control, and dashed lines corresponding to the optimal solution.
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Figure 5. (a) Optimal solution at the shooting interface t=0:45; and (b) trajectories
considered in the cost function.

We note that the �rst optimization stage is really important. If the optimization mesh OM
were generated using the initial guess control (u0(t)=0 in this example) it may contain far
more grid points than actually necessary close to the optimal solution. Figure 3(c) presents
such an OM which contains 1152 grid points (we remind that the largest IM contains only
1168).
Finally, in order to estimate the computational savings due to the use of AMR, we have

solved the optimal control problem on a mesh that had second-level re�nement everywhere.
During this computation, the mesh was held �xed (UM=OM=IM) and contained 1681
grid points. The optimal solution was obtained after 34 iterations with a �nal cost function
of J (u∗)=0:122. Moreover, this computation was more than eight times slower than the
staggered optimization procedure used above. Results are summarized in Table I.
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Table I. Comparison of e�ciency of di�erent strategies. CPU times
were obtained on a PC workstation with an Intel Pentium III
800 MHz processor running Linux 2.2.12. The code was compiled

with gcc with �rst level optimization.

Staggered optimization
Fixed mesh

Stage 1 Stage 2 optimization

OM size 515 755 1681
Initial c.f. 1.185 0.126 1.185
Optimal c.f. 0.126 0.118 0.122
Optimization iterations 12 5 34
CPU time (s) 67.75 227.24 2461.10

5. CONCLUSIONS AND FUTURE WORK

We have presented methods and software for the optimal control of large scale dynamical
models described by systems of time-dependent PDAEs. Our software COOPTAM combines
the use of e�cient numerical methods for solving the model equations and the required
sensitivity equations (DASPK3.0 with AMR) with a package for large-scale optimization based
on sequential quadratic programming (SNOPT5.3). COOPTAM implements a modi�ed multiple
shooting method for the resulting dynamic optimization problem, which improves e�ciency in
the optimization Jacobian evaluation. We have described the underlying methods in COOPTAM
for coupling these two powerful technologies and demonstrated their e�ectiveness for a PDE
problem.
Future work will focus on implementation of adjoint sensitivity analysis for optimal control,

as well as on exploring the possibility of automatically generating the sensitivity PDEs, as
opposed to the current implementation where we compute sensitivities of the semidiscretized
PDE.
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